

Recap

Which fractions of each of these are coloured?

Recap

Some fractions that are written with different numbers have the same value.

In other words, a fraction can be written in many different ways, but have the same value.

1 2

2

These are all equivalent fractions, even though they all have different numerators and denominators.

They show that the same amount of the bar has been shaded overall.

<u>1</u> 4	(
<u>2</u> 8		
<u>3</u> 12		
<u>4</u> 16		

These fractions are all equivalent as they have the same value.

These 3 fractions are equivalent. They have the same value. What is each fraction?

What fractions are equivalent to $\frac{1}{5}$?

Are these two fractions equivalent?

1 10

<u>3</u> 30

Yes!

Can you explain why they are equivalent?

Which group shows an equivalent fraction to $\frac{3}{4}$?

<u>6</u> 8

<u>2</u> 8

 $\frac{6}{8}$ is equivalent to $\frac{3}{4}$