## Parent workshop

1. How we teach your child maths?
2.What is the end of Key Stage 2 expectation?
2. What is 'greater depth?'
4.What can we be doing at home to help our child in maths? 5.Why are you not allowing my child to access the Year 3.... 7 curriculum?

## The four operations- addition and subtraction



We look at explaining each term within the context of CPA (concrete, pictorial and abstract), which helps embed an understanding of what



## The four operations- addition and subtraction

Concrete Pictorial Abstract
$2+1=3$

We look at explaining each term within the context of CPA (concrete, pictorial and abstract), which helps embed an understanding of what is happening with the maths.


## The four operations-addition and subtraction

Concrete Pictorial Abstract
$2+1=3$

We look at explaining each term within the context of CPA (concrete, pictorial and abstract), which helps embed an understanding of what is happening with the maths.

| Statutory Guidance-Written Methods |  |  |  |
| :---: | :---: | :---: | :---: |
| Addition and subtraction |  |  |  |
| $789+642$ becomes | 874-523 becomes | 932-457 becomes | 932-457 becomes |
| 789 | 874 | ${ }^{8} 8^{12} 3^{1}{ }^{1} 2$ | $9^{1} 3^{1} 2$ |
| + 642 | - 523 | - 457 | $-A_{5} S_{6} 7$ |
| 1431 | 351 | 475 | 475 |
| Answer: 1431 | Answer: 351 | Answer: 475 | Answer: 475 |



## The four operations- multiplication and division

Complete: Developing Reasoning and Application to other domains
$6 \times 2=$
Year 3
$6 \times 10=$
$6 \times 20=$

- Write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit times one-digit numbers, using mental methods and progressing to formal written methods


Children need a good grasp of using multiplication and division facts to allow them to use informal jottings to solve simple calculations mentally using recall of known facts.

Year 3 (Statistics)
Solve one and two step problems using information presented in scaled bar charts and pictograms
Non- Statutory
Pupils use simple scales e.g. 2, 5, 10 units per cm.

## Most popular fruit choices at

 snacktime for Y3

How many more people prefer cats to dogs?

$$
5-2=3
$$

| Favourite Pets |  |  |
| :--- | :--- | :---: |
| Cat | $\% \% \% \% \%$ |  |
| Dog | $\% \%$ |  |
| Hamster | $\% \% \%$ |  |
| Each \% stands for 2 votes |  |  |

How many more people preferred banana to apple?
How many people had a snack altogether?
Count in 5's to help you

$$
4 \times 2 \times 3=3 \times 2 \times 4
$$



## The four operations- multiplication and division

Moving towards formal written methods of multiplication and division
Multiplication

Ref: ITP: multiplication facts
25
$\times 4$
$20(5 \times 4)$
$80(20 \times 4)$
100

Linking arrays and grid method

Division
$42 \times 4=168$
$40 \times 4=160$


Ref: NCETM

14

7


## The four operations-multiplication and division

Statutory Guidance- Formal Written Methods
Short multiplication


Answer: 144
$342 \times 7$ becomes

| 3 | 4 | 2 |  |
| :--- | :--- | :--- | :--- |
| $\times$ |  |  | $\mathbf{7}$ |
| $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{9}$ | $\mathbf{4}$ |
|  | 2 | 1 |  |

Answer: 2394

Long multiplication
$24 \times 16$ becomes

$$
\begin{array}{r}
2 \\
24 \\
\times \quad 14 \\
\hline 240 \\
144 \\
\hline 384 \\
\hline
\end{array}
$$

Answer: 384
$124 \times 26$ becomes

Answer: 3224
$2741 \times 6$ becomes

|  | 2741 |  |  |
| ---: | ---: | ---: | ---: |
| $\times$ |  | 6 |  |
| 1 | 6 | 4 | 4 |
|  | 4 | 2 |  |

Answer: 16446

| $124 \times 26$ becomes |  |  |  |
| :--- | :--- | :--- | :--- |
|  | 1 | 2 |  |
|  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{4}$ |
| $\times$ |  | $\mathbf{2}$ | $\mathbf{6}$ |
|  | $\mathbf{7}$ | $\mathbf{4}$ | $\mathbf{4}$ |
| $\mathbf{2}$ | $\mathbf{4}$ | $\mathbf{8}$ | $\mathbf{0}$ |
| $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{2}$ | $\mathbf{4}$ |
| 1 | 1 |  |  |
| Answer: 3224 |  |  |  |

## The four operations- multiplication and division

## Statutory Guidance- Formal Written Methods

Short division
$98 \div 7$ becomes

$$
\begin{gathered}
184 \\
7 \begin{array}{c}
92 \\
7
\end{array}
\end{gathered}
$$

Answer: 14
$432 \div 5$ becomes


Answer: 86 remainder 2
$496 \div 11$ becomes


Answer: $45 \frac{1}{11}$

## Long division

$432 \div 15$ becomes

$$
\begin{array}{ll|lll} 
& & 2 & 8 & \text { r } 12 \\
1 & 5 & 4 & 3 & 2 \\
& 3 & 0 & 0 \\
& 1 & 3 & 2 \\
& & 1 & 2 & 0 \\
\hline & & 1 & 2
\end{array}
$$

$432 \div 15$ becomes

$$
\frac{12}{15}=\frac{4}{5}
$$

Answer: $28 \frac{4}{5}$
$432 \div 15$ becomes


# Counting-Linking in multiplication and division 

Verbally


What has gone wrong in this pattern? Can you fix it?
$\begin{array}{lllll}12 & 24 & 36 & 60 & 72\end{array}$

## What types of question will my child have to

 answer at the end of the Key Stage?$$
2,345 \times 1,000=
$$


$30 \times 40=$

What types of question will my child have to answer at the end of the Key Stage?

$$
15 \% \times 1,000=
$$

$$
1 \frac{1}{2} \times 57=
$$

$$
\frac{2}{6}-\frac{1}{8}=
$$

What types of question will my child have to answer at the end of the Key Stage?

$$
15 \% \times 1,000=
$$

$$
1 \frac{1}{2} \times 57=
$$

$$
\frac{2}{6}-\frac{1}{8}=
$$

## What types of question will my child have to

 answer at the end of the Key Stage?8 At the start of June, there were 1,793 toy cars in the shop.
During June,

- 8,728 more toy cars were delivered
- 9,473 toy cars were sold.

How many toy cars were left in the shop at the end of June?


## What types of question will my child have to

 answer at the end of the Key Stage?8 At the start of June, there were 1,793 toy cars in the shop.
During June,

- 8,728 more toy cars were delivered
- 9,473 toy cars were sold.

How many toy cars were left in the shop at the end of June?


Amina posts three large letters.
The postage costs the same for each letter.
She pays with a $£ 20$ note.
Her change is $£ 14.96$

What is the cost of posting one letter?

Times tables- How are we teaching it?
Division Worksheet

| 1 a. | $50 * 5=$ | 1 b . | $36 \div 4$ |
| :---: | :---: | :---: | :---: |
| 2 a . | $40 * 5=$ | 2 b . | $20 \div 5$ |
| 3 s. | $6 * 2=$ | 3 b . | $18 \div 2$ |
| 4 m | $24 * 4=$ | 4 b . | $20 \div 2$ |
| 5 s | $32 * 4=\square$ | 5 b. | $10 \div 2$ |
| 6. | $24 * 3=\square$ | 6 b . | 18 + 3 |
| 7 a | $4 * 4=\square$ | 7 b . | 9 + |
| 8 A. | $5 * 5=$ | ${ }^{\text {b b. }}$ | $3 \div 3$ |
|  | $21+3=$ | 9 b . | $30 \div 3=$ |
|  | $30+5=$ |  | $8+2=$ |



## Times tables- teaching it!

1. Exploring patterns- What do you notice about?

- Every other number in the 4 times table
- Every third number in the 3 times table
- The total of all the digits in the three times table


2. The difference between knowing and calculating- The importance of fluency!
3. Use concrete apparatus.
4. Making links

- How many sides would 25 pentagons have?
- How many days would there be in 13 weeks?
- How many weeks in 8 years?
- How many sides would 10 pentagons have?
- I have a pile of heptagons. In total they have 560 Sides. How many individual shapes do I have?



## Always, Sometimes or Never? Number

## Stage: 2 *

Are the following statements always true, sometimes true or never true?
How do you know?

| The sum of three numbers is odd | If you add 1 to an odd number <br> you get an even number |
| :---: | :---: |
| Multiples of 5 end in a 5 | If you add two odd numbers you <br> get an odd number |
| If you add a multiple of 10 to a <br> multiple of 5 the answer is a <br> multiple of 5 |  |

## 

## $6+?=10$

All numbers in the 10 times table are also in the $5 s$ ?


Two numbers have a difference of $2 \cdot 38$. What could the numbers be if:

- the two numbers add up to 6 ?
$\square$ one of the numbers is three times as big as the other number?

Two numbers have a difference of $2 \cdot 3$. To the nearest 10 , they are both 10 . What could the numbers be?

A box of labels costs $£ 63$.
There are 140 sheets in the box.
There are 15 labels on each sheet.
Sara, Ramesh and Trevor want to calculate the cost of one label, in pence.
Ramesh uses the number sentence $(6300 \div 140) \times 15$.
Sara uses the number sentence $63 \div 1.4 \div 15$.
Trevor uses the number sentence $(15 \times 140) \div 6300$.
Who is using the right number sentence? Explain your choice.

A shop sells boxes of chocolates costing $£ 2 \cdot 60$. The shop also sells packets of sweets. One packet costs $£ 1 \cdot 39$. Ramesh has a $£ 10$ note and he wants to buy one box of chocolates.
Sara says that Ramesh can work out how many packets of sweets he can buy using the number sentence $10-2.60 \div 1.39$.

Do you agree or disagree with Sara?
If you disagree, what number sentence do you think Ramesh should use?

Explain your reasoning.

